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A B S T R A C T   

Efficient scavenging and converting energy from surrounding environment to achieve the self-powered operation 
of electronics has attracted tremendous interest to meet the energy needs of the rapidly growing Internet of 
Things and portable devices. As a promising technology, the triboelectric nanogenerator (TENG) possesses the 
capability of efficient utilization of ambient mechanical energy for energy supply and self-powered sensing. By 
integrating the soft materials into TENG, the soft TENG can be triggered by a quite weak external mechanical 
stimulation and realize a better conversion of micro mechanical energy. Meanwhile, the deformable soft TENGs 
further expand the application scenarios of TENGs. Here, the advances of soft TENGs by focusing on the fun
damentals, candidate materials, promising structures, applications in energy scavenging and self-powered sen
sors are reviewed. In particular, the wearable and implantable soft TENGs, through which the related self- 
powered sensing or biomechanical energy harvesting can be realized in vivo and in vitro respectively, are sum
marized. Finally, the unique advantages and possible focuses for scientists in future of soft TENGs are 
emphasized.   

1. Introduction 

With the recent continuous advancement of Internet of Things and 
portable electronics, realizing self-powered operation of the intelligent 
devices is a desirable alternative, which can avoid additional economic 
burden and environmental problems caused by regular replacement of 
power sources [1–3]. Efficient energy harvesting from living environ
ment can be an ideal solution to substitute for conventional power 
technologies [4–14]. In particular, the mechanical energy as the most 
widely distributed clean energy ubiquitously existing in our daily life. 
Since 2012, the triboelectric nanogenerator (TENG) has been exten
sively studied as an emerging technology in the field of energy scav
enging, which can realize the high-efficiency conversion of mechanical 
energy to electrical energy [15–21]. Using TENG, diversified forms of 
mechanical energy existed in ambient environment including wind 
[22–33], vibration [34–37], human body motion [38–45], raindrop 
[46–48], water wave [49–52] and rotating motion [53,54], can be 

harvested efficiently. Meanwhile, the TENG-based self-powered sensors 
with different functions have been proposed and widely applied to 
environmental sensing [55–59] and human motion monitoring [60–63]. 

Moreover, the utilization of soft materials will further improve the 
response of TENGs to micro mechanical stimulation [64–67], and 
expand the application scenarios of TENGs, such as wearable and 
stretchable electronics [68–72], implantable self-powered sensing and 
energy scavenging [73–79], and so forth. In general, compared with the 
case in the rigid material based TENGs, the soft materials based soft 
TENGs can realize the more efficient energy conversion through an ideal 
contact between the soft friction materials, and possess a better prospect 
in flexible sensing and energy supply of portable electronics. Over the 
years, the soft TENGs have attracted tremendous efforts and greatly 
advanced, especially in mechanical energy scavenging and self-powered 
sensors, as shown in Fig. 1. 

Herein, the recent progress of soft TENGs are comprehensively 
summarized, meanwhile, the applicability of soft TENGs in various 
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application scenarios is emphatically introduced. This review begins 
with the working principles and invention of soft TENGs. Thereafter, the 
promising soft materials, various structures with unique advantages and 

applications of soft TENGs in energy scavenging and self-powered sen
sors are systematically elaborated. Moreover, the soft TENG based hy
bridized nanogenerators and self-charging systems are also reviewed in 
detail. Particularly, it has been indicated in this paper, the wearable and 
implantable soft TENGs, which can be a significant part in both vitro and 
vivo, maximize their potential of applications. At last, the unique ad
vantages of soft TENGs are concluded, and the possible challenges and 
promising research directions in the future are pointed out. 

2. Soft triboelectric nanogenerator 

2.1. Fundamentals and invention of soft TENGs 

Contact electrification, also known as triboelectrification, was often 
ignored or even regarded as hazardous until the concept of TENG was 
proposed in 2012 [15]. In typical TENGs utilize the integration of 
electrostatic induction and triboelectric effect, an alternating current 
(AC) output could be generated by realizing the periodic change of 
distance or contact area between two friction layers with opposite 
electrostatic charges on the surface after contact electrification [80–84]. 
According to different structures and manners of operating, the working 
principle of TENGs are divided into four main categories [85,86], 
including lateral sliding mode, vertical contact-separation mode, 

Fig. 1. By integrating the soft materials into triboelectric nanogenerator 
(TENG), the soft TENG has attracted tremendous efforts and been greatly 
advanced, especially in mechanical energy scavenging and self- 
powered sensors. 

Fig. 2. Fundamentals and invention of soft TENGs. (a) The operation mechanism of four fundamental modes of TENGs, including lateral sliding mode, vertical 
contact-separation mode, single-electrode mode, freestanding triboelectric-layer mode. (b) Schematic diagram of the first soft TENGs. 
(b) Reproduced with permission [15]. Copyright 2012, Elsevier. 
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single-electrode mode and freestanding triboelectric-layer mode, as 
illustrated in Fig. 2a. As for the soft TENG, it can be also categorized into 
these four fundamental modes. In 2012, the first soft TENG, which is 
operated in the vertical contact-separation mode, was introduced by Fan 
et al. [15]. The Fig. 2b exhibits the structural diagram and working 
mechanism of the soft TENG. Soft polyethylene terephthalate (PET) and 
Kapton sheets are stacked together as a sandwiched structure, and their 
back sides are coated by a layer of Au-Pd alloy film as electrodes. Under 
the external force, the device will be bended, and two sheets will contact 
each other, and then the electrons transfer from PET surface to the 
Kapton surface due to their difference in triboelectric polarity. After the 
external force is removed, the positively charged and the negatively 
charged surfaces with equal charge are separated from each other, lead 
to a potential difference between the bottom and the top electrodes, 

thus, the electrons will flow through external circuit to balance the 
potential difference. As the two friction surfaces approach again, the 
potential difference between the electrodes will be weakened and then 
the electrons will be driven flow backward through the external circuit. 
Therefore, an AC output can be generated under the alternating poten
tial caused by the periodic contact and separation between two thin 
sheets. An output current of 0.6 μA and output voltage of 3.3 V can be 
obtained during the process of bending and releasing of the soft TENG. 

2.2. Material selection 

The contact electrification effect almost exists in any friction process 
between any two different materials or even the same kind of materials 
[87]. Furthermore, many deformable (e.g., stretchable, folding and 

Fig. 3. Promising candidate materials of soft TENGs. (a) Schematic of viscoelastic-polymer-based soft TENG rely on soft contact electrification. (b) Schematic of 
paper-based soft TENG for self-powered pressure sensing. (c) Schematic of textile-based wearable soft TENG for realizing the remote control. (d) Schematic of 
graphene-based conformal soft TENG that can be attached on the human skin. (e) Schematic of silicone-rubber-based with high stretchability. (f) Schematic of liquid- 
metal-based soft TENG for harvesting the mechanical energy of human walking. 
(a) Reproduced with permission [99]. Copyright 2019, ACS Publications. (b) Reproduced with permission [101]. Copyright 2015, ACS Publications. (c) Reproduced 
with permission [97]. Copyright 2015, ACS Publications. (d) Reproduced with permission [104]. Copyright 2016, Elsevier. (e) Reproduced with permission [112]. 
Copyright 2016, Wiley-VCH. (f) Reproduced with permission [113]. Copyright 2018, ACS Publications. 
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flexible) soft materials with their own advantages, such as some soft 
polymers [88–91], papers [64,92], hydrogel [93,94], sponge [95,96], 
fabrics [97,98] and so forth, can be selected to fabricate various soft 
TENG. However, considering some specific requirements for soft TENGs, 
it is necessary to select appropriate soft materials to meet the needs of 
different application scenarios. 

One of the advantages of using soft materials is that an ideal contact 
between materials can be realized, thus, lead to a more effective contact 
electrification process. A single-electrode mode soft TENG based on the 
soft contact electrification at the friction interface was reported by Chen 
et al. [99]. Fig. 3a shows the configuration of the soft TENG, which 
consists of viscoelastic polymer named putty as the triboelectric layer, 
while the putty matrix dispersed by carbon nanotubes (CNT-putty) as 
the electrode sandwiched by the triboelectric layer. Under the ideal 
contact at interface, contact area between the triboelectric layer and 
other objects is increased, thus, the larger output can be obtained. At 
room temperature, the soft TENG exhibit excellent self-healing ability, 
and the output voltage in original state (before cutting) is basically the 
same as that after cutting and self-healing. Moreover, because of the 
ultra-soft property of viscoelastic polymer, the soft TENG is 
shape-adaptive and can be adhered to various surfaces. Such a device 
can be well adapted to the surface of a moving wrist and can be applied 
as a soft power supply for driving an electronic watch by tapping the 
surface of putty film, the developed soft TENG has a great potential to be 
applied in soft electronics and robotics. 

In addition, the paper is a collapsible, lightweight and low-cost 
material with outstanding ability to lose electrons, thus, it is a prom
ising candidate choice for positive triboelectric materials [100]. As 
illustrated in Fig. 3b, a paper-based stacked soft TENG, which is oper
ated in single-electrode mode and composed of paper (as the positive 
triboelectric material and the substrate), polytetrafluoroethylene film 
(PTFE, as the negative triboelectric material) and Al electrode, was 
introduced by Yang et al. [101]. With the application and release of 
external force, the paper and PTFE contact and separate periodically, 
providing an alternating electric output. The soft TENG, which is 
capable of harvesting the micro mechanical energy in stretching and 
twisting and realizing a peak power density of 0.14 W/m2, can be used 
as a portable power source to drive small electronics. Moreover, since 
the electrical output of the fabricated soft TENG will increase with the 
increased external force applied, the self-powered pressure sensing can 
be also demonstrated. 

It is well known that the textile, which is flexible and skin-friendly, is 
one of the most excellent wearable materials, has been widely utilized in 
wearable electronics [102]. In 2015, Seung et al. developed a soft TENG 
operated in vertical contact-separation mode, which consists of a layer 
of Ag-coated conductive textile and a layer of Polydimethylsiloxane 
(PDMS) triboelectric layer with the conductive textile as its back elec
trode [97]. As exhibited in Fig. 3c, the ZnO nanorod arrays film was 
grown on conductive fabric as the template for PDMS, and hence the 
nanoscale pattern was implemented onto the surface of triboelectric 
layer to improve the output performance of the textile based soft TENG. 
Furthermore, the total power output of the soft TENG can be further 
promoted through a multilayer-stacked design, and a remote control can 
be driven by the fabricated wearable soft TENG to control the vehicle 
entry system. 

Additionally, the soft materials with ultrathin thickness can achieve 
perfect conformal contact on the skin, resulting from the enough static 
adhesion force can be formed at the interface [103]. Chu et al. proposed 
a conformal soft TENG, which can be attached on the human skin for 
harvesting the mechanical energy of human motions [104]. As shown in 
Fig. 3d, the single-electrode mode soft TENG is composed of a PDMS film 
with a thickness of 1.5 µm as the triboelectric layer, a PET substrate with 
a thickness of 0.9 µm and a bilayer graphene electrode. The electrical 
power can be generated by the repeated contact between PDMS and 
clothing or the human body and depends on the effective contact area. 
Thus, this wearable device can be utilized as a self-powered tactile 

sensor for detecting the number of touching fingers. 
In addition, the silicone rubber with superior stretchability is widely 

considered as a competitive candidate material for stretchable elec
tronics [105–111]. Lai et al. demonstrated a super-stretchable soft TENG 
in single-electrode mode, which has a silver nanowires (AgNWs) film 
with high conductivity and stretchability as the conductive layer and the 
silicone rubber as both the encapsulation and the triboelectric layer 
[112]. As displayed in Fig. 3e, the AgNWs film is sealed by the silicone 
rubber and the whole device shows a good stretchability. Due to the 
excellent mechanical reliability of the soft TENG, the device is capable of 
operating under intense stretching and can be used as a sustainable and 
portable power supply to drive wearable electronic devices. In addition 
to AgNWs, there are also some liquid conductive materials which can be 
used as flexible electrodes of soft TENG. Following the similar structure 
exhibited in Fig. 3e, Yang et al. used Galinstan, a kind of liquid metal, as 
the electrode of soft TENG, which can maintain a continuous conduc
tivity under the large tensile strain of 300% [113]. As illustrated in 
Fig. 3f, the soft TENG is capable of operating stably under various de
forms, and the short circuit current, open circuit voltage, and average 
power density can reach up to 15.6 μA, 354.5 V, and 8.43 mW/m2, 
respectively. Moreover, this soft TENG can be attached to the sole of the 
shoe and drive several LEDs by converting the mechanical energy of 
human walking. 

Although biomaterials have not been widely used in the field of 
glycosylation up to now, but due to their good biocompatibility and 
biodegradability, it has been reported that recombinant spider silk 
proteins have been used to construct soft TENG. This TENG was based on 
recombinant spider silk proteins (MaSp1). The conversion efficiency of 
mechanical energy into electrical energy reached 47.3%. Moreover, the 
high mechanical properties of spidroins allow a long operation of the 
device which can sustain at least 35,000 cycles. 

2.3. Various structures of soft TENGs 

Various soft TENGs with different structures and working modes 
have their own unique advantages. According to different application 
scenarios, the harvesting of various mechanical energy and the self- 
powered sensing of various environmental stimuli can be realized via 
the appropriate structural design. The vertical contact-separation mode 
soft TENGs, of which the output is proportional to the variation of the 
clearance between the two layer of friction materials, can be used as the 
self-powered pressure sensor. Ha et al. demonstrated a soft TENG 
operated in vertical contact-separation mode with the interlocked 
microridge structure [114]. As shown in Fig. 4a, the microridge struc
ture on the surfaces of P(VDF-TrFE) [poly(vinyl
idenefluoride-co-trifluoroethylene)] film and PDMS film ensure the 
necessary working distance between the triboelectric layers instead of 
needing an additional spacer. Furthermore, due to that the PDMS film 
and P(VDF-TrFE) film are interlocked, the soft TENG is very sensitive to 
compressive and bending strains. As an outstanding multifunction 
self-powered sensor, it can sense the bending motion of fingers and the 
tiny pulse of the artery, and its bending and pressure sensitivity can 
reach up to 0.1 V/◦ and 0.55 V/kPa, respectively. 

For TENG with single-electrode structure, because only one electrode 
is needed, there is no need to connect the two parts of friction materials, 
so the structure can be greatly simplified and can adapt to more forms of 
deformation. Chen et al. proposed a single-electrode mode soft TENG 
with three-dimensional configuration by 3D printing technique [115]. 
Fig. 4b depicts the configuration of the soft TENG, which is consisted of 
composite resin parts (part I and part II) as the triboelectric materials 
and the ionic hydrogel is selected as the electrode. Meanwhile, the 
whole device is ultra-flexible, a compressive deformation will occur 
under the external stress, and the surfaces two triboelectric layers will be 
contacted and charged. Then, with the release of external force due to 
elastic recovery of the whole structure, the two charged surfaces will 
separate and produce an electrical signal. In addition, the fabricated soft 
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Fig. 4. Various structures of soft TENGs. (a) Schematic of vertical contact-separation mode soft TENG with the interlocked micro-ridge structure. (b) The config
uration of a single-electrode mode soft TENG with three-dimensional structure. (c) The single-electrode mode soft TENG with package structure. (d) The micro- 
grating based soft TENG in lateral sliding mode. (e) The wearable textile-based soft TENG in freestanding triboelectric-layer mode. 
(a) Reproduced with permission [114]. Copyright 2018, ACS Publications. (b) Reproduced with permission [115]. Copyright 2018, Elsevier. (c) Reproduced with 
permission [116].Copyright 2016, American Association for the Advancement of Science. (d) Reproduced with permission [117]. Copyright 2014, Wiley-VCH. (e) 
Reproduced with permission [118]. Copyright 2019, Elsevier. 
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TENG can be integrated into the insole as a portable energy source for 
harvesting the biomechanical energy, and it will not affect the walking 
and compromise comfort because of its superior softness. In addition, Yi 
et al. developed a soft TENG operated in single-electrode mode with 
package structure by employing NaCl solution as the electrode and 
rubber with nanorods nanostructures on the surface as both the elec
trification layer and sealing layer, as illustrated in Fig. 4c [116]. By 
utilizing the liquid electrode, the soft TENG has unlimited deformation 
ability in theory. Based on the above fabricated unit, soft TENG can be 
further applied to three other working modes to achieve different 
functions. For example, in a single-electrode structure, it can be 
designed to be worn on the wrist like bracelet, which is capable of 
converting the energy of tapping motion into electrical energy and drive 

80 LEDs to work. 
Furthermore, Zhu et al. reported a micro-grating based soft TENG in 

lateral sliding mode, which can scavenge the mechanical energy during 
sliding motion between surfaces, and the energy conversion efficiency 
can reach up to 50% [117]. As depicted in Fig. 4d, the soft TENG con
sisting of a PTFE film with metal micro-gratings on either side. Thanks to 
the micro-grating design, when two layers of PTFE films with the above 
structure are rubbed, the alternating charge transfer with high fre
quency can be realized, thus, an enhanced output current can be ob
tained. Under a relative sliding velocity of 1 m/s, a globe light can be 
powered directly. Moreover, the soft TENG, which is shape-adaptive, 
can be affixed onto curved surfaces, and diversified forms of motions 
can be utilized such as relative rolling between the two cylindrical tubes. 

Fig. 5. Soft TENGs for scavenging mechanical energy. (a) The lawn structured soft TENG for scavenging wind energy. (b) The elastomer-based soft TENG for 
harvesting the tapping energy during typing. (c) The stretchable soft TENG for scavenging energy from various forms of deformation. (d) The textile-based soft TENG 
for converting mechanical energy from human motion. 
(a) Reproduced with permission [120]. Copyright 2016, Wiley-VCH. (b) Reproduced with permission [121]. Copyright 2016, ACS Publications. (c) Reproduced with 
permission [119]. Copyright 2016, ACS Publications. (d) Reproduced with permission [122]. Copyright 2017, Wiley-VCH. 
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Additionally, for the structure of freestanding triboelectric-layer 
mode, in which the independent friction layer can move freely and 
does not need to connect with the other part of the TENG through wires, 
so it can scavenge multiple forms of mechanical energy more flexibly 
and conveniently. Huang et al. demonstrated a wearable soft TENG 
based on textile in freestanding triboelectric-layer mode, which can 
scavenge and convert the mechanical energy of the human motion 
[118]. Fig. 4e shows the structure diagram of the soft TENG, which is 
composed of two separate conductive fabrics (as the electrode and the 
triboelectric material) separated by cotton yarns and an expanded PTFE 
film (as the freestanding triboelectric material) attached to common 
fabric (as the substrate). After contact electrification, when the free
standing layer reciprocates on the surfaces of the two conductive fabrics, 
even without direct physical contact, the electrons will be driven and 
transfer alternately between the two electrodes. The freestanding layer 
and the separate electrode can be respectively fixed on the wrist and 
waist side of the clothes to scavenge the mechanical energy of various 
human motions (beating arm, walking and running, for instance). Dur
ing swinging the arm, the soft TENG will operate and a capacitor can be 
charged, meanwhile, the stored energy can drive the watch sustainably. 

3. Applications 

3.1. Soft TENGs for scavenging mechanical energy 

As a novel energy technology, soft TENGs possess the same advan
tages as traditional TENGs, such as the stable electrical output, variable 
structure, low cost and high energy conversion efficiency. In particular, 
due to the base material and overall structure are soft, the soft TENG can 
respond to a quite weak environmental stimulation, and can adapt to 
curved surfaces [63,99] or even moving surfaces to realize the scav
enging of mechanical energy of various actions, such as stretching, 
torsion, bending and extrusion [115,119]. 

Wind energy is one of the most accessible and sustainable energy in 
nature, however, the traditional wind power equipment is difficult to be 
applied in our daily life, because of its large size and dangerousness 
[13]. Zhang et al. developed a soft TENG with lawn structured for 
scavenging wind energy, which can be installed on the rooftop [120]. As 
exhibited in Fig. 5a, the proposed soft TENG consists of a vertical array 
of free-standing polymer strip, which is made by a PET strip with indium 
tin oxide (ITO) electrode deposited on the back. Each polymer strip can 
swing freely in the wind, thus, when the wind passes, a 
contact-separation among strips will be realized and an AC output can 
be delivered. Due to that the strip is very flexible, the soft TENG can 
operate in the wind from arbitrary direction and scavenge the wind 
energy at the same time. Moreover, owing to surface modification of PET 
film, the open-circuit voltage and the short-circuit current of the soft 
TENG can reach up to 98 V and 16.3 μA, respectively. This system 
provides an ingenious way to harvest wind energy and can be a sus
tainable power supply for household electronic devices. 

With the development of computer technology, in the work and our 
daily life, the human-computer interaction is indispensable, which is 
mainly realized by tapping the keyboard. In order to harvest the 
biomechanical energy used for typewriting, Li et al. successfully 
designed a soft TENG based on flexible elastomer materials, which can 
scavenge the tapping energy during typing [121]. As shown in Fig. 5b, in 
the soft TENG based on the coordinating of single-electrode mode and 
contact-separation mode, the structural layer will be charged after 
contact with the skin and the dielectric layer will contact the bottom 
electrode under a small pressure of fingers. When the finger is lifted, the 
skin will separate from the structural layer, the dielectric layer is sepa
rated from the bottom electrode, and then the current signal can be 
produced under the difference of potential between the bottom and top 
electrodes. Particularly, the dual-mode soft TENG can be attached to the 
keyboard as a keyboard membrane to effectively harvest the micro 
mechanical energy during the finger tapping. In a normal typing speed, 

by tapping one hour on the keyboard, a capacitor could be charged to 
1.15 V and the stored electric energy can directly drive the thermometer 
and hygrometer. 

As mentioned above, the soft TENG made of stretchable materials 
can withstand and scavenge energy from various forms of deformation. 
Yi et al. reported a soft TENG that can be subject to various de
formations, meanwhile, these deformations can be converted into elec
tricity [119]. As exhibited in Fig. 5c, the soft TENG consists of two 
triboelectric parts separated by air, including silicone rubber with 
electrode on backside and a compound electrode made of carbon black 
(CB) and silicone rubber. Due to the outstanding flexibility of the soft 
TENG, it can operate under various deformations (pressing, bending, 
stretching, and twisting, for example) without any physical damage. 
When the fabricated TENG is pressed, bent, stretched or twisted, the 
triboelectric layers will contact and separate repeatedly, and resulting in 
an AC electrical output. Furthermore, it can be attached to the curved 
and moving surfaces of the human body for scavenging the mechanical 
energy of tapping shoulder, wrist rotation the and arm bending. In 
addition, two series stretchable supercapacitors for storing electrical 
energy harvested by TENG can be encapsulated in silicone rubber 
together with the soft TENG to form a self-charging energy system, 
which can be used as a reliable power supply of wearable electronics. 

Since the human body is an ever-present source of mechanical en
ergy, and clothing is requisite for everyone, therefore, textile-based soft 
TENG is a promising strategy, which can harvest the neglectful energy of 
human motion at any time. Dong et al. developed a soft TENG with 3D 
orthogonal woven structure by using stainless steel/polyester conduc
tive yarn as the electrode, PDMS coating as the triboelectric layer and 
non-conductive Z-yarn woven in the thickness direction for fixing the 
whole structure [122]. Here, the conductive yarn covered by PDMS 
triboelectric layer acts as an energy-harvesting unit that can withstand a 
variety of mechanical deformation, as depicted in Fig. 5d. In virtue of 
the adoption of 3D braiding scheme with two layers of energy collection 
unit, which is different from the simple cross strategy in the traditional 
2D plane braiding model, the manufactured TENG can achieve higher 
output power, and the power density can reach up to 263 mW/m2 can be 
obtained. Furthermore, the soft TENG could be applied as a wearable 
textile to scavenge human motion energy and driving portable 
electronics. 

3.2. Soft TENGs hybridize with other types of generators 

During past years, tremendous research efforts aim to boost the en
ergy harvesting efficiency of nanogenerators have been dedicated, and 
great progress has been achieved, in which the hybridized nano
generator is one of the most optimum choice [123–129]. Compared with 
the nanogenerators based on a single effect, by integrating multiple ef
fects in one device, the hybridized nanogenerators is desirable to realize 
a larger electric power [128,129]. As for hybridized nanogenerator, the 
way to achieve the more efficient harvesting of mechanical energy is to 
convert the energy to the maximum extent by combining multiple cor
relation effects [2]. As we know, the mechanical energy can be har
vested based on triboelectric effect, magnetoelectric effect and 
piezoelectric effect. Moreover, it has been proved that the soft TENG is 
an outstanding platform to hybridize with other types of generators for 
scavenging mechanical energy. 

By using the coupling of electromagnetic effect and contact electri
fication effect, an enhanced electrical output can be generated under a 
same mechanical stimulation. Zhang et al. introduced a mechanically 
flexible hybridized triboelectric-electromagnetic nanogenerator for 
harvesting the mechanical energy in stretching [130]. Fig. 6a shows the 
schematic diagram of the soft hybridized nanogenerator, including the 
TENG part that consists of triboelectric layers (FEP film and PDMS film) 
and electrodes (conductive glass fabric and ITO), and the electromag
netic generator (EMG) part consisting of a Cu coil and a NdFeB magnet. 
With the application and release of the tensile force, the upper and lower 
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layers of hybridized nanogenerator will contact and separate continu
ously, meanwhile, the TENG part and the EMG part will convert the 
applied mechanical energy into electrical output simultaneously based 
on their corresponding working principles, therefore, in this case, the 
mechanical energy can be harvested more efficiently. Furthermore, 
thanks to the flexibility of the whole device, the hybridized 

nanogenerator can be integrated into a bus handgrip to scavenge the 
biomechanical energy it’s pulled by someone. Recently, by combining of 
soft TENG and EMG, Wan et al. reported soft hybridized nanogenerator, 
which can harvest mechanical energy in sliding motion [131]. As 
exhibited in Fig. 6b, the hybridized nanogenerator consists of two parts: 
a magnetic and conductive MC-PDMS film made of PDMS, NdFeB 

Fig. 6. Soft TENG hybridized with other types of generators. (a) The stretchable hybridized electromagnetic-triboelectric nanogenerator for scavenging the me
chanical energy in stretching. (b) The soft hybridized electromagnetic-triboelectric nanogenerator for harvesting mechanical energy in sliding motion. (c) The 
wearable fiber based hybridized piezoelectric-enhanced triboelectric nanogenerator. (d) The paper-based transparent piezoelectric-triboelectric hybridized nano
generator. 
(a) Reproduced with permission [130]. Copyright 2016, ACS Publications. (b) Reproduced with permission [131]. Copyright 2020, Elsevier. (c) Reproduced with 
permission [132]. Copyright 2018, Elsevier. (d) Reproduced with permission [92]. Copyright 2017, Elsevier. 
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particles and multi-walled carbon nanotubes, and a Kapton film with 
copper coil inside. When the Kapton film and MC-PDMS film slide 
relatively, the TENG part operated in single-electrode mode, meanwhile, 
and the current can be generated in the copper coil owing to the change 
of magnetic field. Due to the different output characteristics, the output 
voltage of EMG part is limited but the output current is larger, while the 
output voltage of TENG part is large but the output current is limited, 
these two components can complement each other to achieve a faster 
charging speed than that of the single component. Moreover, the soft 
MC-PDMS membrane can be fixed on clothes or attached to human skin 
as a wearable energy device to harvest the sliding mechanical energy of 
human motion. 

By combining the triboelectric effect and piezoelectric effect, Guo 
et al. developed a hybridized nanogenerator based on textile, in which 
the enhanced output resulting from the positive interaction of the two 
effects can be obtained [132]. Fig. 6c exhibits the structure and working 
mechanism of the hybridized nanogenerator, by selecting poly
vinylidene fluoride (PVDF) fibers with piezoelectric effect after polari
zation treatment as triboelectric material, the hybridized nanogenerator 
incorporates a vertical contact-separation mode soft TENG and a typical 
piezoelectric nanogenerator. Particularly, by choosing an appropriate 

polarization direction for PVDF, the current outputs generated by 
triboelectric effect and piezoelectric effect will have the same direction, 
thus, the cooperative work can be realized. Because of the outstanding 
flexibility of the overall structure, the soft hybridized nanogenerator can 
be perfectly combined with ordinary clothes. For example, it can be 
attached to human elbows to scavenge the mechanical energy of body 
movement and identify different movements. Based on the similar 
principle, He et al. demonstrated a transparent soft 
piezoelectric-triboelectric hybridized nanogenerator [92]. As depicted 
in Fig. 6d, an energy harvesting unit is based on the paper substrate and 
has different functional layers, including a negative triboelectric layer 
(FEP film), positive triboelectric layer (paper) and a piezoelectric layer 
(PVDF-PDMS nanocomposite film) sandwiched by the top and bottom 
ITO electrodes. The soft TENG part is operated in contact separation 
mode, when the papers were flipped, one of the fabricated nano
composite paper contacts with another paper, the paper will be posi
tively charged while the surface of FEP will be negatively charged. 
Meanwhile, the piezoelectric part can be triggered when the paper 
squeezes each other under the external force. In the synergic working 
process, maximum power density can reach up to 286.5 mW/m2. 
Additionally, a paper-based self-charging system was realized by 

Fig. 7. Soft TENGs for self-charging systems. (a) The self-charging system based on arch shaped soft TENG and flexible lithium-ion battery. (b) The flexible self- 
charging system based on soft TENG and graphite-paper-based supercapacitor. (c) The wearable self-charging power unit with integral package structure. (d) 
The self-charging power system based on the soft hydraulic TENG and fiber supercapacitor for scavenging water energy. 
(a) Reproduced with permission [134]. Copyright 2013, ACS Publications. (b) Reproduced with permission [135]. Copyright 2016, ACS Publications. (c) Reproduced 
with permission [136]. Copyright 2018, Elsevier. (d) Reproduced with permission [48]. Copyright 2018, Wiley-VCH. 
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combining paper-based hybridized nanogenerator and paper-based 
supercapacitors, which can be used as a sustainable power supply for 
temperature-humidity sensor. Due to its lightweight, flexible and 
transparent structure, the reported soft device can harvest mechanical 
energy without affecting the reading, which has a good prospect in 
practical application. 

3.3. Soft TENGs for self-charging power systems 

As an outstanding sustainable energy source for portable electronic 
devices, the self-charging power systems based on soft TENG and 
various soft energy storage components with excellent flexibility have 
attracted great scientific interest [133]. While the environmental me
chanical energy is harvesting by the soft TENG, the generated electrical 
energy can be converted into chemical energy simultaneously, which 
can be stored in the soft batteries or soft supercapacitors. 

In 2013, based on the integration of arch shaped soft TENG and 
flexible lithium-ion battery, the flexible self-charging power system was 
introduced by Wang et al. for the first time [134]. As illustrated in  
Fig. 7a, the vaulted soft TENG is operated in vertical contact-separation 
mode, which is composed of two Kapton films with Al electrodes on the 
back side. Meanwhile, the flexible lithium-ion battery with the top 
surface of the TENG as substrate is composed of the composite cathode 
made of LiFePO4, active carbon and binder, the TiO2 nanowires grown 
on the soft carbon cloth as the anode, and the polyethylene (PE) film for 
separating. As the external vibration is applied to the soft TENG, the 
upper and lower parts of the arched TENG are continuously contacted 
and separated to realize an AC output, and then the generated electric 
energy can be stored in the top soft battery after rectification. In 
particular, the self-charging power system can simultaneously scavenge 
energy and provide external power. In this case, electrochemical re
actions related to charging and discharging occur concurrently on the 
electrodes of the battery. When the soft self-charging power system is 
working under a sustaining deformation, the produced direct current 
(DC) output can maintain a relatively stable value within 12 h and 
continuously power the UV sensor. 

Furthermore, the flexible supercapacitor is another ideal energy 
storage device which can be integrated with soft TENG to demonstrate 
the self-charging energy systems. Guo et al. fabricated a flexible self- 
charging package by a graphite-paper-based supercapacitor with 
capacitance of 1 mF/cm2 and a single-electrode mode soft TENG [135]. 
The energy harvesting unit is made of the AgNWs film electrode embed 
in silicone triboelectric layer, while the energy storage unit is based on a 
kirigami structure, as described in Fig. 7b. Both two functional units can 
withstand complex mechanical deformation due to their proper material 
selection and structural design, thus, the entire self-charging power 
system that built by encapsulating the two functional units is stretch
able, twistable and bendable. The proposed power package can scavenge 
the energy generated in human movement under various mechanical 
deformation, moreover, it can be fixed on the human body continuously 
supply power for the wearable electronics. In addition, by using the 
MXene-based supercapacitor with a larger capacitance reach up to 23 
mF/cm2 as the energy storage unit, Jiang et al. developed another 
self-charging power system with integral package structure [136]. As 
depicted in Fig. 7c, the soft TENG part consists of the carbon fiber 
electrode and the silicone triboelectric layer, meanwhile, the solid-state 
supercapacitor with interdigital structure fabricated by choosing 
Ti3C2O2 as the active material and polyvinyl alcohol (PVA)/H3PO4 gel as 
the electrolyte. Subsequently, these two components are connected by a 
rectifier and sealed together by silicone to form the wearable 
self-charging system. The flexible system, which can be worn on the 
wrist, will contact the skin repeatedly while moving, causing the soft 
TENG module to work and charge the supercapacitor module. The 
developed power system can successfully drive the thermometer and 
electronic meter to work and is a reliable energy source for wearable 
devices. 

In addition to biomechanical energy, some micro mechanical energy 
in surrounding environment, such as the energy of raindrop falling, can 
also be harvested and stored by the self-charging energy system based on 
soft TENG. By integrating the soft hydraulic TENG and fiber super
capacitor, Zhang et al. developed a self-charging power system to 
scavenge water energy to continuously drive electronics [48]. As illus
trated in Fig. 7d, the whole system is based on soft TENG, which can 
harvest the mechanical energy of water droplets. Meanwhile, the soft 
TENG is encapsulated by PDMS together with the fiber supercapacitors 
on the back side, thus, the water penetration can be avoided. When the 
raindrop flow on the surface of the hydrophobic layer, a unbalanced 
potential between the back electrodes can be caused, which will drive 
the electrons to transfer back and forth through the external circuit, and 
in the meantime the fiber supercapacitors on the back can be charged 
after rectification. Furthermore, the system can be further designed as a 
raincoat, which can convert the mechanical energy of water like rain
drops to light the LED sustainably. 

3.4. Soft TENGs for self-powered sensors 

As mentioned above, electrical output can be generated by TENG 
under external mechanical stimulation, and consequently the scav
enging of mechanical energy is realized. On the other hand, the elec
trical signal induced by external stimulation contain the information of 
these stimuli such as magnitude, frequency and so forth. Therefore, the 
electrical signal generated by TENG can be directly used to monitor the 
changes of ambient environment and sense the external mechanical 
stimulation, without any other power supply, and finally realize the self- 
powered sensing [137]. In particular, the self-powered sensors based on 
soft TENGs has higher sensitivity and wider application scenarios, 
compared with other TENG based self-powered sensor systems using 
rigid materials. 

In 2013, Yang et al. reported a soft TENG based self-powered tactile 
sensor operated in single-electrode mode [63]. As shown in Fig. 8a, in a 
typical working process, when the finger contacts and separates from the 
PDMS (triboelectric layer), a pulse electrical signal will be generated, 
through which the occurrence of touch can be reflected. Moreover, with 
the enhancement of applied pressure, the contact area between skin and 
triboelectric layer will increase, so more electrostatic charges will be 
generated on the PDMS film surface after contact electrification, 
resulting in an increased output voltage. For the fabricated self-powered 
pressure sensor, the pressure detection sensitivity of each sensor unit in 
the displayed 4 × 4 tactile sensor arrays can reach up to 0.29 V/kPa. 
Because of the flexibility of the whole system, it can be attached to a 
curved surface, such as the surface of a tube, to sense the distribution of 
pressure applied by the hand. 

However, due to the difference in triboelectric polarity of different 
materials, when the objects of different materials contact the surface of 
pressure sensor based on TENG operated in single-electrode mode, even 
under the same pressure, the amplitude and polarity of triboelectric 
charges on the sensor surface can be quite different, which will lead to a 
different electrical output, and ultimately affect the accuracy of the 
pressure sensor [138]. To solve this problem, Ren et al. adopted the 
design of coating a charge shielding layer on the top surface of the TENG 
operated in single-electrode mode based on the contact and separation 
between the inner materials, which can avoid the influence of the top 
electrostatic charge on the output performance of TENG [138]. As 
illustrated in Fig. 8b, the self-powered pressure sensor based on the soft 
TENG consists of a PDMS film as triboelectric layer and PDMS-CB 
electrode made of carbon black and PDMS, which are separated by the 
spacer. The shield film cover on top is highly conductive and grounding 
through external circuit, thus, electrostatic charge generated by the 
triboelectrification process between the external object and the top 
surface of the sensor can be shielded. Therefore, under the same pres
sure, there is almost no difference in the voltage output generated when 
the sensor is pressed by objects with different materials. Moreover, an 
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enhanced sensitivity of 51 kPa/V can be obtained by printing burr ar
rays on the inner surfaces of triboelectric layer and electrode. 

In addition, the soft TENGs with outstanding flexibility and shape 
adaptability can be designed as various wearable self-powered sensors. 
He et al. reported an antibacterial soft TENG based on cellulose fibers for 
realizing self-powered breathing Monitoring [139]. Fig. 8c depicts the 
schematic diagram of the contact-separation mode TENG, the 2D cel
lulose microfibers/nanofibers composite paper and FEP film as the 
triboelectric material with micropores structure for removing PM2.5 and 
allowing the air through smoothly, meanwhile, the Ag nanofibers elec
trode were deposited on their backside. Soft TENG with good flexibility 
can be implanted into the mask without reducing the comfort, and can 
be driven by the respiratory airflow and realize the monitoring of 
breathing. As a wearable self-powered sensor, the respiratory rate and 

respiratory intensity of the wearer before and after running can be well 
monitored at the same time. Han et al. proposed a stretchable TENG 
band for self-powered identity recognition by distinguishing the change 
of each person’s muscle morphology during walking [140]. As illus
trated in Fig. 8d, in the fabricated soft TENG, the physiological saline as 
liquid electrode sealed by a rubber tube as the electrification layer. The 
stretchable device can be worn on the arm or leg, and the area of the 
charged interface between the rubber tube and the skin will increase or 
decrease as the muscle contracts or relaxes, resulting in the alternating 
potential difference between the ground and the electrode, thus gener
ating an AC signal. Due to the different muscle change degree of each 
person during a certain movement and the original muscle morphology, 
a unique electrical signal will be obtained even when they complete a 
same action. Therefore, according to the electric signals with specific 

Fig. 8. Soft TENGs for self-powered sensors. (a) The flexible self-powered tactile and pressure sensor. (b) The self-powered pressure sensor with a charge shielding 
layer. (c) The antibacterial wearable sensor implanted into the mask for realizing self-powered breathing Monitoring [139]. (d) The wearable self-powered sensor for 
achieving the recognition of the identity. (e) The self-powered pulse sensor with ultra-high sensitivity for monitoring the heart rhythm. 
(a) Reproduced with permission [63]. Copyright 2013, ACS Publications. (b) Reproduced with permission [138]. Copyright 2018, Wiley-VCH. (c) Copyright 2018, 
Wiley-VCH. (d) Reproduced with permission [140]. Copyright 2019, Elsevier. (e) Reproduced with permission [141]. Copyright 2017, Wiley-VCH 
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waveform generated by each person in the process of walking, the 
recognition of their identity can be realized. 

Additionally, thanks to the soft structure, a small-scale deformation 
can be sensed by soft TENG sensitively. Ouyang et al. reported a self- 
powered pulse sensor, which is composed of Kapton film with a Cu 
electrode deposited on back side (as the electrification layer) and Cu film 
(as another electrification layer and electrode), and the whole device 
was sealed by PDMS [141]. As exhibited in Fig. 8e, the surfaces of the 
two friction layers possess soft nanostructures, which lead to an 
enhancement in the contact area at the interface under an external force 
and enhance the electron transfer process in the triboelectrification 
process. Particularly, the continuous contact between the triboelectric 
layers achieves a high signal-to-noise ratio, so an ultra-high sensitivity of 
the sensor can be obtained. The self-powered sensor can be triggered by 
the pulse with any amplitude and can be fixed on various positions of the 
human body due to its good flexibility. Moreover, the device can 
monitor the heart rhythm accurately in real time, and has great potential 
for health diagnosis in the field of clinical medicine. 

3.5. Wearable soft TENGs 

By virtue of its superior flexible structure, the soft TENG has been 
widely used as a wearable electronics for scavenging mechanical energy 
and self-powered sensors. The soft TENGs can be integrated with other 
daily wear products such as shoes [115,142], socks [98,143], clothes 
[118,121,132] and so forth, to realize the wearable functions. In 2013 
Zhu et al. developed a power generation insole based on 
contact-separation mode soft TENG [144]. As illustrated in Fig. 9a, the 
soft with multilayer folding structure, which consisting of the Kapton 
substrate, the PTFE film with Cu electrode on the back side as electri
fication layer and the Al foil as another electrification layer, was packed 
inside the insole. During walking, the foots will periodically apply and 
release pressure on the constructed power generation insole, resulting in 
periodic contact and separation between the friction layers in the soft 
TENG, and finally realize an AC output. Moreover, as a wearable energy 
harvesting device, it can be used as a sustainable energy supply for LED, 
mobile phone and other portable electronic devices. Clothing is one of 
the excellent wearable platforms that can be integrated with soft TENG. 
Jung et al. introduced a wearable soft TENG based on fabric that can be 
woven onto the armpit area of the clothes [145]. As shown in Fig. 9b, 
based on carbon fabric, the soft TENG consists of two parts, one of which 
is composed of alternating polyurethane (Pu) and polyimide (PI), and 
another part is made up of PDMS and Al with a similar design. When 
swinging the arm at 1.5 Hz, an electrical output with 0.18 μW/cm2 

power density can be produced by fabric-based soft TENG and stored in 
the super capacitor after rectification. Furthermore, because the faster 
the friction speed the faster the charge accumulation, so the human 
movement can be monitored through the speed of charge accumulation, 
such as walking, running and sprinting. 

The soft TENGs that are shape-adaptable and stretchable can be 
attached directly to the human skin. A shape-adaptable soft TENG pro
posed Yang et al. [146], consisting of Kapton film with wavy structure as 
triboelectric layer and sandwiched between two stretchable serpentine 
Cu electrodes deposited on PDMS, as exhibited in Fig. 9c. The Kapton 
film will be in full contact with Cu electrodes and electrified under the 
vertical compression or transverse tension of external force, and the two 
will separate after releasing the external force. Under the periodic force, 
Cu and Kapton film contact and separate periodically, and an alternating 
current signal can be obtained. The good stretchability of the device 
arising from the waveform structured triboelectric layer and the 
serpentine design of the electrode. Meanwhile, the PDMS substrate is 
shape-adaptive and highly stretchable. Thus, the flexible soft TENG 
could be attached to the moving and curved human skin as a 
self-powered sensor, by which the movement of elbow, knee and muscle, 
even the tiny movements such as swallowing can be well monitored. 
Recently, Anaya et al. realized a wearable wireless sensing based on the 

near-field electrostatic induction [147]. In the process of near-field 
electrostatic induction, when the two charged surfaces move relative 
to each other after contact electrification a variable electric field E→ in 
space can be caused, and will further lead to a changing voltage between 
the grounded conductor in the near field and the ground. As described in 
Fig. 9e, the soft TENG can be attached to the Orbicularis Oculi muscle, 
when the eye is closed, the muscle contract, causing the device to stretch 
and the two triboelectric layers (PEDOT: PSS film and silicone film) 
contact, while when the eye is open, the muscle will relax and the two 
triboelectric layers separate from each other. Therefore, during blinking, 
an alternating electrical signal will be obtained between the ground and 
the metal electrode placed on the glasses leg, and the monitoring of eye 
movement is realized. Moreover, based on the same concept, a PDMS 
film can be adhered to the eyelid to realize wireless sensing of eye 
movement based on the triboelectrification process between skin and 
PDMS film during blinking. Different from the traditional 
contact-separation working mode in TENG, the reported soft TENG does 
not need any connection between the triboelectric material and the 
electrode, which widens the design options of wearable TENG. 

3.6. Implantable soft TENGs 

Different from the in vitro application scenarios of soft TENGs as 
described above, there are some stringent conditions that need to be met 
for the purpose of realizing the application of soft TENGs in vivo [75,76, 
148–150]. Firstly, it is necessary to ensure that the implanted devices 
can not cause any damage to human organs, thus, the enough soft 
structure and appropriate size for the implantable TENGs is indispens
able. Secondly, in order to ensure the biocompatibility and sealing of the 
implantable TENGs, the whole device needs to be strictly encapsulated 
by the biocompatible materials such as PDMS. Finally, due to that the 
amplitude of mechanical stimulation in vivo is much smaller than that in 
vitro, it is necessary to be sensitive enough for implantable TENG to be 
triggered by the tiny motion. 

The first implantable soft TENG which is capable of scavenging 
mechanical energy in a living animal was introduced by Zheng et al. 
[76]. As illustrated in Fig. 10a, the PDMS thin film with pyramid arrays 
on the surface and Al film with patterned nanostructure acted as the 
triboelectric layers, of which the surface modification enables the high 
sensitivity of the device. Meanwhile, the Kapton film and the Au film 
deposited on the back of Kapton film are selected as the substrate and 
the other electrode of the soft TENG, respectively. The fabricated device 
is encapsulated by a layer of PDMS for realizing the biocompatibility and 
leak-proofness, and can be implanted under the skin of rat chest. In the 
process of breathing, the thoracic of the rat will expand and contract 
periodically, which makes the triboelectric layer contact and separate 
periodically, and then resulting in AC signal. Moreover, under the 
stimulation of small amplitude mechanical movement, the output cur
rent and voltage of this device can reach 0.14 μA and 3.73 V respec
tively, which can drive the pacemaker to work and regulate the heart 
rhythm of the rat. 

Liu et al. demonstrated a self-powered pressure sensor based on soft 
TENG in contact-separation mode, which can be implanted into the 
ventricle and atrium of a pig [148]. As exhibited in Fig. 10b, the soft 
TENG is fabricated by employing the surface modified PTFE (nano-
PTFE) film with Au electrode coated on the back as the electrification 
material and Al as the other electrode and electrification layer. The two 
electrification layers separated by the spacer made by ethylene-vinyl 
acetate (EVA), which will contact each other and charged under the 
action of external pressure, and then separate again after the pressure is 
released, therefore, a periodic electrical signal can be generated by the 
implantable TENG as the heart beats periodically. The larger the 
external pressure, the larger the effective contact area between the 
triboelectric materials, so an enhanced electrical signal can be obtained. 
As a self-powered pressure sensor, the device shows an excellent 

Y. Song et al.                                                                                                                                                                                                                                    



Nano Energy 84 (2021) 105919

13

Fig. 9. Wearable soft TENGs. (a) The soft TENG with multilayer folding structure as power generation insole. (b) The fabric-based wearable soft TENG for scavenging 
mechanical energy during human movement. (c) The shape-adaptable soft TENG attached to human skin for human motion monitoring. (d) The soft TENG attached 
to the Orbicularis Oculi muscle and eyelid based on near-field electrostatic induction. 
(a) Reproduced with permission [144]. Copyright 2013 Elsevier. (b) Reproduced with permission [145]. Copyright 2014, Wiley-VCH. (c) Reproduced with 
permission [146]. Copyright 2015 Wiley-VCH. (d) Reproduced with permission [147]. Copyright 2020 Elsevier. 
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sensitivity which can reach up to 1.195 mV/mmHg and an outstanding 
linearity. Moreover, the encapsulation layer of the device including a 
layer of PTFE film (the first layer) and a layer of PDMS film (the second 
layer), which is durable and can be well compatible with blood. By 
virtue of the flexibility and biocompatibility, the soft TENG can be 
implanted into the heart to realize self-powered monitoring of endo
cardial pressure (EP) without affecting the normal beating of the heart 
and even detect arrhythmia effectively. The proposed implantable soft 
TENG has a great application prospect in implantable medical 

monitoring. 
In addition, implantable soft TENG can realize continuous moni

toring of heart rhythm and heart rate for real-time diagnosis. Ma et al. 
proposed an implantable soft TENG consists of triboelectric layers 
(nanostructured PTFE film and Al film), substrate (Kapton film), elec
trodes (Au film coated on the back of substrate and Al film), encapsu
lation layers (PTFE film, PDMS film and Parylene coating layer), elastic 
Ti strip and spacer [149]. As illustrated in Fig. 10c, the soft device can be 
attached to the pericardium. The contact-separation mode soft TENG 

Fig. 10. Implantable soft TENGs. (a) The implantable soft TENG for scavenging biomechanical energy in vivo during the process of breathing. (b) The implantable 
soft TENG to realize self-powered monitoring of endocardial pressure. (c) The implantable soft TENG to realize continuous monitoring of heart rhythm and heart rate 
for real-time diagnosis. (d) The implantable soft TENG based on degradable materials for harvesting biomechanical energy. 
(a) Reproduced with permission [76]. Copyright 2016 Wiley-VCH. (b) Reproduced with permission [148]. Copyright 2019 Wiley-VCH. (c) Reproduced with 
permission [149]. Copyright 2016, ACS Publications. (d) Reproduced with permission [150]. Copyright 2016, American Association for the Advancement of Science. 
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will be driven by the beating of the heart, thus, the generated electrical 
signal contains abundant physiological information of the heart. By 
recording and comparing the working signals of electrocardiogram 
(ECG) and implantable soft TENG in different states of pig, indicating 
that the heart rhythm and the heart rate can be monitored accurately by 
the self-powered sensor. Furthermore, when the soft TENG is implanted 
into the right and left lateral wall of the heart adjacent to the lung, the 
peak output of the soft TENG will fluctuate periodically with the peri
odic breathing, indicating that the implantable soft TENG can be also 
applied for self-powered respiration monitoring. 

In particular, the implantable soft TENG based on degradable ma
terials can be directly degraded and absorbed in vivo at the end of its 
operation cycle. Zheng et al. developed a biodegradable and implantable 
soft TENG for scavenging biomechanical energy in vivo [150]. As illus
trated in Fig. 10d, the poly(caprolactone) (PCL) film and the poly 
(L-lactide-co-glycolide)(PLGA) film with nanorod arrays etched on the 
surface were selected as the triboelectric layers, meanwhile, the ultra
thin Mg film coated on the triboelectric layer as the electrode. When the 
soft TENG with PLGA as the encapsulation layer was immersed in 
phosphate buffered saline, it would be degraded completely within 90 
days. The soft TENG coated by PLGA shows excellent biocompatibility. 
Nine weeks after implantation into the rat, the wound healed well 
without obvious inflammatory reaction. As a biomechanical energy 
harvester, the fabricated soft TENG can produced an output voltage of 
4 V and work sustainably for 3 weeks. After implanted, the soft TENG 
will be degraded in the body spontaneously instead of removing it sur
gically, so it can be a promising transient implanted medical device. 

4. Summary and perspectives 

In summary, the application of soft materials further promotes the 
development of the TENG, of which the practical perspectives have been 
further improved. Since the first soft TENG was proposed in 2012, 
tremendous scientific efforts have been devoted to this field and rapid 
progress has been attained. In this review, the development and ad
vances of soft TENGs including the fundamentals and invention, prom
ising candidate materials, various structures with their own advantages 
and applications in energy scavenging and self-powered sensors are 
systematically summarized, with emphasis on their applicability in 
various practical application scenarios. 

As a newly promising energy technology, the soft TENG possess 
various unique advantages: 1) the soft TENGs can be triggered by a tiny 
external mechanical stimulation and realize a more effective energy 
harvesting of micro mechanical energy. On the other hand, a higher 
sensitivity of the self-powered sensors based on soft TENGs can be 
realized. 2) The soft TENGs can be deformable (e.g., stretchable, folding 
and twistable), meanwhile, the mechanical energy in these deformations 
can be scavenged. In addition, the soft TENGs can be attached to the 
curved surface and moving surface to realize the harvesting of me
chanical energy and self-powered sensing. 3) Thanks to its flexible 
structure, the soft TENGs can be used as wearable and implantable 
electronics for realizing human motion sensing and implantable medical 
monitoring or scavenging biomechanical energy to provide sustainable 
energy for portable electronic devices. 

In future, the following research aspects is desired to be focused. 1) 
The output performance of soft TENG need to be further improved for 
driving high-power portable electronic devices. 2) The soft multi-effect 
coupling nanogenerators can be constructed based on the soft TENGs to 
achieve higher energy conversion efficiency. 3) Recently, researchers 
are working on direct current triboelectric nanogenerator (DC-TENG), 
which can directly provide DC output without any rectification methods 
[151–153]. As we all know, compared with AC output, the direct current 
(DC) output is more suitable for driving electronic devices and energy 
storage. Therefore, the soft DC-TENGs will be one of the focuses of future 
research. 4) Exploring more superior soft materials and new structures 
of soft TENGs to achieve more functions and further expand their 

application scenarios. With the progress of soft TENG in recent years and 
the more and more scientific research efforts in the future, the greater 
breakthroughs and more promising practical prospects in this field can 
be expected. 
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